R FOR PROBABILISTIC MODELING AND REASONING LABORATORY

III Semester: CSE(AI & ML)								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACAC02	Core	L	Т	Р	С	CIA	SEE	Total
		1	0	2	2	30	70	100
Contact Classes: 12	Tutorial Classes: Nil	Practical Classes: 24				Total Classes:36		
Prerequisite: Probability and Statistics								

I. COURSE OVERVIEW:

This course will expose the students to R programming environment, introduces to sampling and exploring data. It also provides a foundation in both probability theory and mathematical statistics and provides an indication of the relevance and importance of the theory in solving practical problems in the real world.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. How to manipulate data within R and to create simple graphs and charts used in introductory statistics.
- II. The given data using different distribution functions in R.
- III. The hypothesis testing and calculate confidence intervals; perform linear regression models for data analysis.
- IV. The relevance and importance of the theory in solving practical problems in the real world.

III. COURSE SYLLABUS:

Week - 1: INTRODUCTION TO COMPUTING

- a. Installation of R
- b. The basics of R syntax, workspace
- c. Matrices and lists
- d. Subsetting
- e. System-defined functions; the help system
- f. Errors and warnings; coherence of the workspace

Week – 2: GETTING USED TO R: DESCRIBING DATA

- a. Viewing and manipulating Data
- b. Plotting data
- c. Reading the data from console, file (.csv) local disk and web
- d. Working with larger datasets

Week - 3: SHAPE OF DATA AND DESCRIBING RELATIONSHIPS

- a. Tables, charts and plots.
- b. Univariate data, measures of central tendency, frequency distributions, variation, and Shape.
- c. Multivariate data, relationships between a categorical and a continuous variable,
- d. Relationship between two continuous variables covariance, correlation coefficients, comparing multiple correlations.
- e. Visualization methods categorical and continuous variables, two categorical variables, two continuous variables.

Week – 4: PROBABILITY DISTRIBUTIONS

- a. Sampling from distributions Binomial distribution, normal distribution
- b. tTest, zTest, Chi Square test
- c. Density functions
- d. Data Visualization using ggplot Box plot, histograms, scatter plotter, line chart, bar chart, heat maps

Week - 5: EXPLORATORY DATA ANALYSIS

Demonstrate the range, summary, mean, variance, median, standard deviation, histogram, box plot, scatter plot using population dataset.

Week – 6: TESTING HYPOTHESES

- a. Null hypothesis significance testing
- b. Testing the mean of one sample
- c. Testing two means

Week – 7: PREDICTING CONTINUOUS VARIABLES

- a. Linear models
- b. Simple linear regression
- c. Multiple regression
- d. Bias-variance trade-off cross-validation

Week – 8: CORRELATION

- a. How to calculate the correlation between two variables.
- b. How to make scatter plots.
- c. Use the scatter plot to investigate the relationship between two variables

Week – 9: TESTS OF HYPOTHESES

- a. Perform tests of hypotheses about the mean when the variance is known.
- b. Compute the p-value.
- c. Explore the connection between the critical region, the test statistic, and the p-value

Week – 10: ESTIMATING A LINEAR RELATIONSHIP

- Demonstration on a Statistical Model for a Linear Relationship
- a. Least Squares Estimates
- b. The R Function Im
- c. Scrutinizing the Residuals

Week – 11: APPLY-TYPE FUNCTIONS

- a. Defining user defined classes and operations, Models and methods in R
- b. Customizing the user's environment
- c. Conditional statements
- d. Loops and iterations

Week – 12: STATISTICAL FUNCTIONS IN R

- a. Write Demonstrate Statistical functions in R
- b. Statistical inference, contingency tables, chi-square goodness of fit, regression, generalized linear models, advanced modeling methods.

IV.REFERENCE BOOKS:

- 1. Sandip Rakshit, "Statistics with R Programming", McGraw Hill Education, 2018.
- 2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "AN Introduction to Statistical Learning: with Applications in R", Springer Texts in Statistics, 2017.
- 3. Joseph Schmuller, "Statistical Analysis with R for Dummies", Wiley, 2017.
- 4. K G Srinivasa, G M Siddesh, Chetan Shetty, Sowmya B J, "Statistical Programming in R", Oxford Higher Education, 2017.

V.WEB REFERENCES

- 1. www.oikostat.ch
- 2. https://learningstatisticswithr.com/
- 3. https://www.coursera.org/learn/probability-intro#syllabus
- 4. https://www.isibang.ac.in/~athreya/psweur/